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ABSTRACT: Land use in rural areas has a significant impact on its immediate surroundings, particularly in terms of 

land cover and sealed surfaces. This study proposes a novel approach that focuses on identifying non-conforming land 

use and quantifying its impacts on the relevant parcel and its direct environment. In this study, we built a parcel-based 

land use scene classification dataset focusing on rural areas in Flanders, Belgium, a region notable for having the 

highest degree of urban sprawl in Europe. To classify a parcel’s land use, we trained and tested deep learning networks 

on our dataset. The trained CNNs exhibit overall accuracies ranging from 55.66% to 61.43%, outperforming a ViT 

model. We observed that pretraining significantly influences deep learning network performance, but pretraining on a 

remote sensing dataset does not necessarily yield a better model. We quantified the environmental impact of land use 

alterations by leveraging existing resources such as land use, imperviousness, and naturalness maps. Furthermore, we 

proposed a Human Land Cover Index (HLCI), a metric designed to gauge human influence via the land cover map.  

 

 

1. INTRODUCTION 

Increasing settlement area is a growing concern in Europe, particularly in Flanders, the northern region of Belgium. 

Currently, settlement areas account for approximately 33.4 % of the total land area in this region (Pisman et al. 2021).  

The expansion of settlement areas in Flanders grows continuously and is haphazardly distributed across the entire region 

(Buitelaar and Leinfelder 2020; Pisman et al. 2021). This growth is predominantly attributed to residential and garden 

development (Pisman et al. 2021). "Settlement area" refers to the land designated for human activities, which includes 

housing, industrial and commercial zones, infrastructure, as well as areas earmarked for recreational purposes such as 

parks and gardens. One significant driver behind this expansion is urban sprawl. According to a report from the European 

Environment Agency (EEA) that assesses urban sprawl, Belgium ranks second in the category of weighted urban 

proliferation—a measure of urban sprawl (European Environment Agency. and Swiss Federal Office for the Environment 

(FOEN). 2016). The European Commission has set out the goal of "no net land take" by 2050 (EU Soil Strategy), to 

prevent the increase in human settlement area. One of Flanders's efforts to meet the goals of the EU Soil Strategy and 

Europe's Green Deal is to focus on smart urban planning and limiting land take, which refers to the conversion of 

previously agricultural or natural areas into urban land with buildings and infrastructure. Thus, it is necessary to monitor 

land use changes in rural areas. 

 

To further bolster endeavors to curb the expansion of settlement areas, it is imperative to undertake the measurement 

and mapping of human settlements and their direct environmental impact (Vogler and Vukomanovic 2021). By tracking 

detected land use changes, various corresponding environmental changes, such as alterations in land cover, sealed surfaces, 

and naturalness, can be monitored. Consequently, this study proposes a novel approach that centers on land use. We 

hypothesise that non-conforming land use (not following the zoning plan) in rural areas exerts a more substantial influence 

on their immediate surroundings. Hence, the primary goal of this study is to identify non-conforming land use in rural 

regions and quantify its implications on the relevant parcel and its direct environment, particularly in terms of land cover 

and sealed surfaces. 

 

Measuring the impact of land use changes in agricultural zones is challenging since knowledge of actual land use is 

limited. Dataset of industrial and commercial companies in Flanders exists, but are not reliable in terms of time accuracy, 

economic activity, and location. Consequently, an accurate understanding of historical land use is lacking. This lack of 

knowledge hinders the precise quantification of the influence of land use changes on the surrounding environment. While 

time-series maps showcasing land cover, imperviousness, and naturalness are available, a time-series map illustrating the 

potential drivers behind these changes remains absent. To fill this gap, we propose a parcel-based land use classifier. In 

pursuit of this objective, we present a parcel-based land use dataset. This dataset is distinct in its emphasis on land use 

within agricultural and rural domains—a focus that sets it apart from conventional scene classification datasets. Our aim 

is to illustrate the intricate relationship between land use and land cover dynamics. Through this endeavor, we seek to 

highlight the causal chain linking land use decisions to subsequent changes in land cover. 
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In contrast to much of the existing research on land use and land cover analysis, our approach centers on scene 

classification rather than pixel-wise classification. In the context of low-resolution images, the size of objects tends to be 

similar to the pixel resolution. However, when dealing with Very High Resolution (VHR) images, attempting to discern 

land use at the pixel level becomes less practical(Cheng et al. 2020; Xia et al. 2017), often referred to as semantic image 

segmentation. Instead, groups of pixels collectively represent objects of interest. This leads to Geographic Object-Based 

Image Analysis (GEOBIA) as the logical progression. GEOBIA involves initially identifying objects by clustering pixels 

based on attributes such as color and texture. Subsequently, each object's class is determined by analyzing the average 

pixel value within that object. 

Our previous work (Cuypers, Nascetti, and Vergauwen 2023) explores Land Use/Land Cover (LULC) mapping using 

GEOBIA and a combination of satellite and VHR aerial imagery. The objects were generated through an unsupervised 

clustering algorithm, which can be enhanced with deep learning methods. Notably, the VHR bands derived from aerial 

imagery were found to significantly influence class prediction accuracy. When it comes to land use management 

applications, a parcel-based analysis proves to be more fitting and relevant than a pixel or object-based approach (Bin et 

al. 2014). As a result, our present research focuses on harnessing the power of deep learning in conjunction with VHR 

imagery to enhance parcel interpretation and classification accuracy. 

 

The primary contributions of this work are: 

• We developed a novel framework for parcel-based land use classification in rural areas. This workflow 

incorporates automated dataset preparation and applying deep learning networks for classification. 

• We built a parcel-based land use scene classification dataset focusing on rural areas in Flanders, a region 

notable for having the highest degree of urban sprawl in Europe. Our dataset is the first focusing on rural areas 

and comprises ten distinct classes which will help in human settlement monitoring. 

• We trained state-of-the-art Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) and 

investigated various training optimization strategies such as employing pretrained weights.. 

• Furthermore, we propose the Human Land Cover Index (HLCI), a metric designed to gauge human influence 

via the land cover map. We quantified the environmental ramifications of land use alterations by leveraging 

existing resources such as land use, imperviousness, and naturalness maps to pinpoint the land use changes 

that yield the most significant human impact. 

 

The rest of this article is organized as follows. Section 2 describes the current state of the art on scene classification, 

the relevant datasets, as well as some works on measuring the impact of land use on the environment. Our dataset is 

extensively described in Section 3. The methods to establish scene classification and measure land use impact are 

explained in Section 4. The experiments, results, and discussion are listed in Section 5. We conclude with Section 6. 

 

 

2. RELATED WORK 

2.1 Scene Classification Datasets 

Various scene classification dataset exists and are used in benchmarking scene classification methods, but land use, 

land cover, and object classes are mixed together in the available datasets. The UC Merced dataset (Y. Yang and Newsam 

2010) contains 21 scene categories with 100 samples for each category, which include land cover classes as well as object 

classes. The images are 256 x 256 pixels and have a resolution of one foot (30.48 cm). NWPU-RESISC45 (Cheng, Han, 

and Lu 2017) has 45 scene classes with 700 samples per class. The images are 256 x 256 pixels with varying resolutions 

ranging from 30 to 0.2 m. AID (Xia et al. 2017) contains 30 classes with a total amount of 10,000 multi-source images 

and a varying amount of samples per category. The images are 600 x 600 pixels and have varying resolutions ranging 

from 8 to 0.5 m. The more recent MillionAID (Long et al. 2021) has similar classes to our dataset, namely 51 classes that 

can be grouped in 28 parents nodes which belong to eight base classes. These base classes are agriculture land, commercial 

land, industrial land, public service land, residential land, transportation land, unutilized land, and water area. Each of the 

51 classes has 2000 to 45,000 sample images. However, the images have mixed resolutions ranging from 0.5 to 153 m. 

The image sizes also vary, ranging from 110 × 110 to 31,672 × 31,672 pixels. A parcel-based, very high resolution dataset 

of aerial imagery focusing solely on land use is missing. Therefore, we propose a new dataset to bridge this gap. 

 

2.2 Scene Classification Methods 

 

Recent developments on remote sensing scene classification methods focus on deep learning with Convolutional Neural 

Networks (CNNs). Attention-based models such as vision transformer have also been employed for scene classification. 

 

CNN modules can be through neural network ensembles. Zhang et al. introduce a combination of CNNs for scene 

classification and test it on the UC Merced dataset and a manually annotated satellite image of Sydney with 1 m resolution. 
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They call their method Gradient Boosting Random Convolution Network (GBRCN). It incorporates two elements: first, 

a Gradient Boosting Machine, and, second, reusing the learned weights in each CNN for the base learner called the 

Random Convolutional Network (F. Zhang, Du, and Zhang 2016). Wang et al. incorporate a recurrent attention 

mechanism in a CNN module in order to reduce computing power and redundant data. They validate their new network 

on their developed dataset, OPTIMAL-31, and prove their model achieves state-of-the-art performance for remote sensing 

scene classification (Q. Wang et al. 2019). The dataset OPTIMAL-31 contains 1860 images with varying resolutions and 

31 classes including object classes such as airplane and bridge. Contrary to Wang et al., Tong et al. focus on channel 

attention and create a much lighter network, named channel-attention-based DenseNet (CAD). They validate their 

network on the UC Merced, AID, and NWPU-RESISC45 datasets. Their proposed attention outperforms the traditional 

CNN models: ResNet50 and VGG16 (Tong et al. 2020). 

 

Scene classification can also be an initial step in building detection. The authors of (Sun, Tang, and Zhang 2017) 

develop a two-step method using CNNs to first detect villages in a rural environment and then, for the detected villages, 

detect buildings by classifying smaller images with a resolution of 0.27 m. The authors conclude that CNNs offer an 

efficient method and satisfactory results for building detection in rural areas with complex backgrounds. However, the 

usage of the building or building type is not distinguished. 

 

Other methods to enhance CNN training is through data augmentation as proposed by Yang et al. (N. Yang et al. 2018). 

The authors propose a channel-dropping training data augmentation strategy in which one of the image's input bands is 

removed during training. The benefit of this data augmentation technique is demonstrated on datasets with four input 

channels (RGB and NIR) and the UC Merced dataset with 3 input channels (RGB). Though performance with the 4-

channel datasets increased, the performance of the method on the 3-channel dataset severely decreases. However, it still 

performed better than above-mentioned GBRCN (F. Zhang, Du, and Zhang 2016). Moreover, they find that a fine-tuning 

method following (Nogueira, Penatti, and Dos Santos 2017) leads to much better results. 

 

Vision transformers have been applied to the task of remote sensing scene classification. Lv et al. (Lv et al. 2022) 

evaluate ViT models on the UC Merced and the NWPU-RESISC45 dataset and compare to CNN models. They found 

that the channel-attention-based CNN (CAD) by Tong et al. (Tong et al. 2020) showed better performance than the 

classical CNNs: VGG16 and ResNet50. ViT-based methods performed even better, especially when pretraining is 

performed. CTNet, a combination of a pretrained CNN and a pretrained ViT module, proposed by Deng et al. (Deng, Xu, 

and Huang 2022), outperforms all above mentioned methods on the AID and NWPU-RESISC45 datasets. It has the ability 

to both extract semantic features through the ViT module and structural information through the CNN branch. The authors 

apply their framework using ResNet34 and MobileNet v2. In this work, we validate our dataset on classical CNNs and 

compare the performance against a ViT. 

 

2.3 Parcel-Based Land Use Classification 

A combination of data sources can help in classifying land use. The authors of (W. Zhang et al. 2017) utilize VHR 

aerial imagery, Lidar, Google Street View (GSV) images, and GIS data to obtain thirteen parcel features and train a 

random forest classifier. The features include parcel size, number of buildings, maximum building levels, Normalized 

Difference Vegetation Index (NDVI), and length of detected text in the GSV images. All the used features are derived 

from the above-mentioned input data sources: building detection and story height estimation is approximated from the 

Lidar data, the NDVI is obtained through the near infra-red and red bands of the VHR aerial image, and the length of text 

in the GSV images requires a text detection and recognition module. The method achieves an overall accuracy of 77.5% 

within in the study area of New York. However, its applicability to different regions is limited due to the requirement of 

specific input data, which is not available universally. Moreover, the time-sensitive nature of the data further restricts its 

application, as certain data sources are generated intermittently. 

 

2.4 Land Use Impact 

The significance of land use classification is shown in the literature through metrics of human footprint and naturalness. 

Vogler and Vukomanovic  examine the effects of urbanization and population growth by quantifying the human footprint. 

The authors generate metrics for and quantify changes in housing density, imperviousness, per capita land consumption, 

and land use efficiency (Vogler and Vukomanovic 2021). Recent work by Ekim et al. proposes a Naturalness Index (NI) 

to quantify and visualize human influence on the environment. To create this index, the authors consider four influencing 

factors: population density, land cover, accessibility, and electrical power infrastructure (Ekim et al. 2021). In our work, 

we also use land cover and assume the same weights as Ekim et al. to create our Human Land Cover Index (HLCI).  
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3. DATASET CREATION 

For the task of parcel-based land use classification in non-urban zones in Flanders, Belgium, we create a large dataset 

with VHR aerial images and its associated land use labels. The dataset includes ten classes: daytime recreation, retail, 

community, hospitality (food & beverage), industry, office, agricultural land, agricultural infrastructure, leisure 

accommodation, and residential. The aerial images are gathered from 23 municipalities between 2018 and 2022. An 

overview of the image samples per class can be found in Table 1. The images are automatically labeled using available 

GIS datasets described below. We refer to this dataset in the rest of the text as D.  

 

The proposed dataset is suitable for the task of parcel-based scene classification because 

• it focuses purely on land use 

• it is parcel based, and can thus be utilized to monitor individual activities 

• it is a real dataset, i.e. not manually created. A model that performs well on this dataset, will perform well in 

real applications. 

 
Table 1 The classes present in dataset D and their sample counts 

Class  # samples 

0: Daytime recreation  428 

1: Retail  399 

2: Community  369 

3: Hospitality (food & beverage)  187 

4: Industry  1,089 

5: Office  1,267 

6: Agricultural land  30,052 

7: Agricultural infrastructure  6,959 

8: Leisure accommodation  109 

9: Residential 6,266 

 

The sizes of the images exhibit variation, with a mean width of 505 pixels. Specifically, the tenth percentile corresponds 

to 119 pixels, while the ninetieth percentile reaches 941 pixels. The values of image heights are comparable to image 

width. 

 

Although the dataset is parcel-based, we choose not to mask the areas around the parcels for several reasons. First, the 

shape of the parcels can give away the function, especially for agricultural land which often has an irregular shape. 

However, since we specifically want to detect illegal land use that resulted from a change from agricultural use to a non-

conforming land use, we do not want shape to be a deciding factor to land use class. 

 

3.1 Source Data Collection 

To generate our  dataset D, we wrote various pyQGIS scripts that process a list of input data sources, shown in Table 

2. In this section, we expand on the input data sources. In the following section, we show an overview of the GIS Python 

scripts used to automatically match each orthomosaic to a label and the output labels each of them generate. 

 

Imagery - Aerial orthomosaics of Flanders are typically created twice a year: in the winter and in the summer. Available 

orthomosaics for Flanders include low (1  m) resolution, medium (25 cm and 15 cm since 2022) resolution, and high (10 

cm) resolution. Only one high resolution image is available, and it spans the years 2013-2015. In order to facilitate model 

training, we opt not to use high resolution imagery but use only medium resolution imagery with a resolution of 25 cm 

and 15 cm in 2022. Furthermore, we decide to use winter images exclusively to reduce foliage obstructing visibility in 

the imagery. We limit the dataset to imagery no older than 2018. Although imagery from before then is available, there 

is limited label source data available and the reliability of that data deteriorates. 

Dual-sensor models are explored in research for scene classification, such as RGB-D scene classification and 

segmentation (Jin et al. 2022). However, for the study area, only two Lidar-based digital surface models (DSM) (including 

building heights) were captured over the time spans 2001-2004 and 2013-2015. To ensure the usability of the trained 

model, we will only train on RGB imagery since this data is available for each year. 

 

Labels - Acquiring information about the functional use of a parcel is not evident, which is the main motivation for 

creating a deep learning model that can identify the functional use from an aerial image. The labels are extracted from 

five sources: Business directory by Leiedal, Sport infrastructure, Agricultural parcels, Points of Interest (POI), and 

Registered companies (Dutch : VKBO). Evident from this list, a public dataset with companies already exists (VKBO). 

However, it is highly unreliable for two reasons. First, the location is not the location of the business' activity, but the 
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headquarters. For small business, this address is often the owner's residence. Second, the actual business' category cannot 

be extracted from this dataset. Businesses in Flanders list all their economic activities when they register, but since any 

change to this list costs money and there is no limit to the number of activities that can be listed, companies list numerous 

activities making it impossible to put them in only one of the categories required for this work. Thus, extracting location 

and economic activity from this dataset is highly unreliable. Therefore, we integrate other data sources and limit the usage 

of the VKBO to build our dataset. One of these is the sports infrastructure dataset which we directly obtained from the 

Flemish government. It localizes sport infrastructures by coordinates and classifies them by type (such as tennis fields, 

gym halls, fishing ponds, etc.). This dataset was created in 2018 and frequently gets updated, so that it is reliable in the 

time dimension as well as location. 

The data source Business directory by Leiedal is a private, manually annotated dataset in possession of inter-communal 

Leiedal. It localizes companies in 13 municipalities and lists the three most dominant business functions. Further, we 

enrich our dataset with economic activities from a public POI (Points Of Interest) Web Feature Service (WFS) and 

publicly available shapefiles of Agricultural parcels. The latter is available since 2008 with yearly new versions. 

 

Supporting data - Scene classification requires to capture the surrounding area around the parcels as well. We use the 

administrative parcels to generate a rectangular area that encompasses the entire parcel and parts of the surrounding area. 

We decided not to mask the area outside the parcel for two reasons. First, this would reveal the shape of the parcel which 

can be influenced by the land use of the parcel. For example, agricultural land is more likely to have irregular shapes. 

Since the goal is to detect non-conforming land use changes, the shape of the parcel should not be used by the trained 

model as a factor. Second, we hypothesise that the surroundings of a parcel are influenced by the economic activity on a 

parcel. For example, a growing industry will require adapted road infrastructure. Besides parcels, we also utilize address 

points, municipality borders, and a zoning plan. The zoning plan enables us to only extract imagery from parcels located 

in agricultural and natural areas. Table 2 lists all used data sources used in this work and their relevant information. 

 
Table 2 Data sources used for the generation of training samples and for the effect measurement of land use changes. 

Dataset name (Dutch) Resolution Available years Format 

Winter aerial orthomosaic 25 cm & 15 cm (2022) 
2000-2003, 2005-2007, 2008-

2011, 2012, 2013,..., 2022 
.tif 

Business directory by Leiedal (Bedrijvengids) 13 municipalities 2018 - 2023 .csv 

Sports infrastructure (Sportinfrastructuur)  2018 - 2023 .csv 

Agricultural parcels (Landbouwgebruikspercelen)  2008 - 2023 .shp 

Points Of Interest (POI)  2023 WFS 

Registered companies (VKBO)  2023 .shp 

Adresses (CRAB)  2023 .shp 

Adminstrative parcels (Administratieve percelen GRB)  2014 – 2023 .shp 

Zoning plan (Gewesplan)  2000 .shp 

Municipalities (Gemeenten)  2023 .shp 

Greenmap (Groenkaart) 1 m 2009, 2012, 2015, 2018, 2021 .tif 

Soil sealing map (BAK - Bodem Afdekkingskaart) 5 m 2012, 2015, 2018 .tif 

 

 

3.2 Scene and Label Extraction 

With the given input data listed in Table 2, we set up rule-based pyQGIS processing scripts to extract image patches 

with its associated land use function. The scripts and the class outputs they generate are visualized in Figure 1Figure 1 

The data extraction pyQGIS processing scripts with their data input and class outputs. Of each class three samples are 

shown.. We employ High Throughput Computing with Condor (HTC) to divide the "GDAL:cliprasterbyextent" processes 

over multiple cores. The GDAL clipping script only run on CPU and takes up most of the running time. This way, we 

can divide the jobs over multiple cores and generating the dataset is sped up significantly. 

 



 

2023 Asian Conference on Remote Sensing (ACRS2023) 

6 

 

 
Figure 1 The data extraction pyQGIS processing scripts with their data input and class outputs. Of each class three samples are shown. 

3.3 Data Splits 

To reduce class imbalance, we create a subdataset, called D2000, where the samples are limited to 2000 per class. The 

class distribution of this dataset is shown in Figure 2. Due to the large class imbalance, we carefully split the data in train, 

validation, and test set so that each class is optimally represented in each split. Furthermore, we split based on the 

municipality where the image is captured, so that a single municipality is only present in one split. As a result, images of 

the same parcel available over multiple years are in the same data split. Secondly, we make sure that the most 

underrepresented class (leisure accommodation) is split in such a way that the largest split is the train set. Overall we aim 

for the largest split to be the train set followed by the test set. 

 
Figure 2 Class distribution in the balanced D2000 dataset. 
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4. METHODS 

4.1 CNNs and ViTs 

Large CNN models pretrained on natural image datasets such as ImageNet perform well on benchmarking datasets 

because they are pretrained on very large datasets. For remote sensing scene classification, imagery is widely available 

but labels are much harder to obtain. Therefore, transfer learning is the most common approach in remote sensing scene 

classification. The CNN is first trained on a large natural image dataset and then fine-tuned on the target dataset. In this 

work, we employ pretrained CNNs and freeze all layers except the last layers to then fine-tune the model on our own 

dataset D2000. 

 

The drawback of fine-tuning is that training the final layers alone does not suffice to teach the model to understand 

inter-class similarity and intra-class diversity that is typical of remote sensing datasets (D. Wang, Zhang, Du, et al. 2023). 

Since labels are mostly absent but a plethora of remote sensing imagery exists in the field of remote sensing, researchers 

are investigating other learning approaches such as unsupervised and self-supervised learning. Momentum Contrast 

(MoCo) (He et al. 2020) is a  self-supervised learning technique where a network is pushed to improve image 

representations with a contrastive loss. The loss function pushes positive pairs (an image and its augmented version) 

closer together and pushes negative pairs (the input image and images from a different classes) further apart. Ayush et al. 

build further upon the MoCo training technique and consider remote sensing images of the same location taken at different 

times as positive pairs (Ayush et al. 2022). Besides using these temporal positive pairs, the authors combine the 

contrastive loss learning with geo-location classification, where the classes are the location where the images is taken. 

The network can deduce the location from the context of the image (for example, an image of an Indian elephant is most 

likely taken in India). Therefore, their framework includes contrastive learning, where the loss is computed based on the 

features from the input image and images of the same location taken at a different time (temporal positive pairs) - which 

can be seen as the augmented images in the MoCo framework - and geography aware classification. The resulting trained 

network is intended as a pretrained encoder and can further be fine-tuned on a remote sensing task, such as object detection 

and semantic segmentation. There is however, recently, a new large-scale remote sensing dataset that is sufficiently large 

for training a network from scratch in a supervised manner, namely MillionAID (Long et al. 2021). 

In this work, we initialize a ResNet-50 model with weights obtained from pretraining in a supervised manner on 

ImageNet-1k and MillionAID and from pretraining in a self-supervised manner on imageNet (MoCo) and on a remote 

sensing dataset considering temporal pairs and location (MoCo-v2-Geo). 

 

Besides CNNs, vision transformers are also becoming more popular in the field of scene classification. The Vision 

Transformer (ViT) was proposed by (Dosovitskiy et al. 2021) in 2021, and has since inspired researchers in the field of 

remote sensing (D. Wang, Zhang, Xu, et al. 2023; Deng, Xu, and Huang 2022; D. Wang, Zhang, Du, et al. 2023), In a 

ViT, an image is divided into 16 patches, and each is fed as an input to the model. This limits the model's ability to learn 

global features (J. Zhang, Zhao, and Li 2021). Although the ViT does not outperform CNNs of similar size trained on 

mid-sized datasets, it becomes interesting when trained on large-scale datasets such as ImageNet-21k. The authors of 

(Dosovitskiy et al. 2021) show that fine-tuning the pretrained ViT model on domain specific datasets reaches state-of-

the-art performance. In this work, we fine-tune a ViT-base (ViT-B) model on our dataset. 

 

4.2 Fine tuning 

We train the model on the train set, and save the best model based on its performance on the validation set. To test the 

final model's performance, we evaluate on the test set. 

 

We choose to fine-tune our models instead of training from scratch as it has been proven that the performance is better 

in the field of scene classification (Nogueira, Penatti, and Dos Santos 2017; Pires De Lima and Marfurt 2019). Models 

pre-trained on large natural image datasets and fine-tuned on small remote sensing datasets outperform models directly 

trained on the smaller remote sensing datasets. Even for ViTs, transfer learning outperforms training from scratch (Steiner 

et al. 2022). This can be attributed to the generality of the initial layers of the network across all datasets; these layers are 

capable of detecting fundamental elements like lines, shapes, and blobs. The domain-specific datasets are generally not 

large enough to train a network to detect these visuals. 

 

Fine-tuning a pre-trained network starts by reusing the weights of the net trained on a very large dataset from a different 

domain (such as ImageNet) and then continuing training on the target dataset with a lower learning rate. There are two 

fine-tuning options: continuing training all layers or freezing the first layers and only adjusting the last layers. We use 

three different initialization weights from pretrained ResNet50 on Imagenet-1k, MoCo-v2, and MillionAID. For the ViT 

base model (Vit-B), we use the weights from pretraining on ImageNet-21k. The exact implementation details used in this 

work are described in Section 5. 
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4.3 Human Land Cover Index 

Land use has an impact on the land cover of its direct environment. A change in land use will influence the land cover 

of the parcel, but also the area directly around the parcel. To quantify the influence of land use changes on the direct 

environment, we create a Human Land Cover Index (HLCI) derived from the Flemish Greenmap (Dutch: Groenkaart) 

by weighting land cover class’s counts over a parcel and its direct surroundings. The classes in the Greenmap are: high 

green, low green, agriculture, and non-green. The weights for the respective classes are: 0, 2, 8, and 10. Consequently, 

the HLCI ranges from 0 to 10 with 0 being the most natural and 10 having the most human influence. Our HLCI is adapted 

from (Ekim et al. 2021) where the same land cover weights are used. 

 

Per parcel, the number of occurrences of each class are added resulting in a pixel count. Then, the class counts are 

multiplied by a weighting factor. The final weighted counts are added and divided by the total number of class counts in 

the parcel. The result is a value between 0 (completely covered by "high green") and 10 (no green present). The HLCI 

gives an indication of the intensity of land usage by humans. 

 

Let v be the list of land cover occurrences of each class and w be the list of corresponding land cover weights. Then the 

weighted land cover values v' can be obtained through element-wise multiplication: 

 

𝑣′ = 𝑣𝑖 ∗ 𝑤𝑖  𝑓𝑜𝑟 𝑖 = 1, 2,3,4 
( 1 ) 

The HLCI can be calculated as the sum of the weighted values v' divided by the sum of all values v: 

 

𝐻𝐿𝐶𝐼 =  
∑ 𝑣′𝑖

4
𝑖=1

∑ 𝑣𝑖
4
𝑖=1

 

( 2 ) 

 

5. EXPERIMENTS 

5.1  Metrics 

We evaluate the trained models based on their performance on the test set. We consider the Overall Accuracy (OA) 

which is the sum of all correct classification divided by the total number of classifications. Since OA is heavily influenced 

by class size, we include the Average Accuracy (AA), which is the average of the individual class accuracies so that the 

model is evaluated over all the classes equally. Additionally, Cohen's Kappa Coefficient considers agreement between 

predicted and true class while correcting for agreement that occurs by chance. It is thus a good metric to evaluate the 

model performance on a specific dataset considering the number of classes. 

 

5.2 Implementation Details 

Both Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) models are set up using the PyTorch 

framework. To fine-tune ResNet50, we freeze all layers except for layer 4 and the fully connected (fc) layer. We use a 

weighted cross entropy loss function, batch size of 32 and Stochastic Gradient Descent (SGD). We achieve stable models 

at about 10 epochs. From our experiments, we found that increasing the number of epochs to 20 did not increase the 

performance. The learning rate is adjusted with a cosine function; the base learning rate is 0.03 and the final rate is 1e-5 

with a weight decay of 1e-4. The resolution of the input images is 224 x 224. The ViT model is loaded from Hugging 

Face (backbone: google/vit-base-patch16-384), pretrained on ImageNet-21k and fine-tuned on ImageNet 2012 at a 

resolution of 384 x 384. We further fine-tune it on our dataset with a batch size of 8 for 10 epochs. We set the learning 

rate at 1e-5. 

 

We trained each model five times and list the averages of the overall accuracy (OA), average accuracy (AA), and 

Cohen's Kappa Coefficient. We found that each model training was very consistent and showed little variation.  

 

5.3  Classification Results 

In Table 3, we report the results of the train classification networks on our balanced dataset D2000. The best AA is 

achieved with ResNet50 pretrained on ImageNet-1k (40.86 %), followed closely by ResNet50 pretrained on MillionAID 

(40.67 %). Although a higher performance was expected on the model pretrained on the remote sensing dataset 

MillionAID, it could not outperform the model pretrained on the natural images. This can be explained by the mixed and 
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widely ranging resolutions in the images of MillionAID, whereas the resolution of the images in our dataset are 25 or 15 

cm, which is much higher and a small range compared to MillionAID. Based on the OA, ResNet18 achieves the best 

performance (61.43 %). This metric is much higher than the AA because it is heavily influenced by the classification 

results on the largest data classes, i.e. agricultural land and agricultural infrastructure. A Kappa value between 0.41 and 

0.60 indicates moderate agreement of the models. 

 

The MoCo pretrained models perform lower than the fully supervised pretrained models, which is expected since these 

models were pretrained in an unsupervised fashion. However, the pretrained models on geo-specific data do not achieve 

significantly better OA. MoCo-TP is pretrained on temporal positive pairs of remote sensing images. Thus, we expect it 

to understand remote sensing imagery better. When considering the OA, the geo MoCos - geo, geo+TP, and TP - 

outperform regular MoCo, with MoCo-geo achieving the highest OA of 61.02 %. The authors of (Ayush et al. 2022) find 

that for the task of classification on the training dataset, functional Map of the World, MoCo-TP achieves the highest OA 

(68.32 %) outperforming MoCo-geo by four percentage points. However, when fine-tuning the whole model on the 

dataset, the model's performance increases to 71.55 %, which might indicate that the model was not pretrained enough.  

Transferring the pretrained geo MoCos, the authors of  (Ayush et al. 2022) found that the MoCo-geo weights gave the 

best fine-tuned results on a land cover dataset, outperforming the net initialized with ImageNet weights. This is also what 

we see in the OA of our results. 

 

Although unsupervised pretrained networks do not outperform fully supervised pretrained networks yet for the task of 

down-stream remote sensing scene classification, domain-specific unsupervised pretraining tasks do bridge the gap 

between unsupervised pretraining and fully supervised pretraining. Our results back up the findings of (Ayush et al. 2022). 

 
Table 3 Fine-tuning results on balanced dataset D2000.  

Model Weights OA AA Kappa 

ResNet18 ImageNet-1k 61.43 39.75 0.5259 

ResNet50 ImageNet-1k 61.32 40.86 0.5262 

ResNet50 MillionAID (Long et al. 2021) 61.22 40.75 0.5256 

ResNet50 MoCo (He et al. 2020) 55.66 37.96 0.4662 

ResNet50 MoCo-geo (Ayush et al. 2022) 61.02 39.85 0.5222 

ResNet50 MoCo-geo + TP (Ayush et al. 2022) 59.89 38.44 0.5084 

ResNet50 MoCo-TP (Ayush et al. 2022) 58.24 38.24 0.4932 

ViT-B ImageNet-21k 49.37 34.14 0.4361 

 

Class accuracies on D2000 - Since our dataset suffers class imbalance, we list the classification accuracies per class of 

the models with the highest AA in Table 4. The individual accuracies in this table are thus not the result of averages of 

several runs but the result of one single model. As expected, the classes with the highest presence in the dataset achieve 

the highest accuracies, such as agricultural land and agricultural infrastructure. The class residential is the third largest 

class but only achieves a maximum AA of 37.56 %. This can be explained by the fact that many residential lots also serve 

another function such as community and office. Therefore, it is more difficult to distinguish these classes from one another. 

The classes that are most difficult for the models to predict right are retail, community, industry, and leisure 

accommodation. Agricultural land is the most easily identified since it is the only class that seldom contains buildings. 
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Table 4 Class accuracies and Average Accuracy 

Class ResNet18 

ImageNet-1k 

ResNet50 

ImageNet-1k 

ResNet50 

MillionAID 

ResNet50 

MoCo 

ResNet50 

MoCo_geo 

ResNet50 

MoCo_geo+TP 

ResNet50 

MoCo_TP 

0: Daytime recreation 72.88 67.80 71.19 71.19 72.88 66.10 67.8 

1: Retail 15.09 28.30 20.75 5.66 18.87 15.09 3.77 
2: Community 13.79 6.90 3.45 10.34 17.24 3.45 13.79 

3: Hospitality  

(food & beverage) 

28.12 25.00 40.62 40.62 25.00 31.25 31.25 

4: Industry 13.92 13.92 11.39 27.22 7.59 8.86 5.70 

5: Office 59.57 51.06 42.55 48.94 48.23 46.10 55.32 

6: Agricultural land 93.50 93.50 92.68 90.24 92.20 92.68 92.85 
7: Agricultural 

infrastructure 

81.54 83.33 78.24 66.53 80.17 80.72 77.55 

8: Leisure 
accommodation 

0 18.18 13.64 9.09 18.18 27.27 13.64 

9: Residential 32.17 32.01 37.56 26.15 31.85 31.38 29.48 

Average Accuracy 41.06 42.00 41.21 39.60 41.22 40.29 39.11 

 

Figure 1Error! Reference source not found. shows the confusion matrix of a trained ResNet50 model. The results 

are normalized over the true classes. From the confusion matrix, it is clear that class 6 (agricultural land) is the easiest for 

the model to classify, followed by class 0 (daytime recreation) and 7 (agricultural infrastructure).  

 
Figure 3 The normalized confusion matrix of a ResNet50 model pretrained on ImageNet-1k. 

 

6. DISCUSSION 

The impact of land use changes in rural areas is significant. The importance of investigating land use in rural areas has 

been shown by other researchers. Vogler and Vukomanovic found in their study on the US that mean per-capita land 

consumption was 8.5 times higher than in exurban, suburban, and urban density lands (Vogler and Vukomanovic 2021). 

Zeng and Ramaswami also came to a similar conclusion: the direct impact of land use in low-density rural lands is ten 

times greater than in urban areas due to larger homes and parcels, and about five times more road surface per person is 

required in rural areas (Zeng and Ramaswami 2020). 

 

In Flanders, this issue is also pressing. The Spatial Report in Flanders (Pisman et al. 2021) indicates that the increase 

in sealed surface is higher than the population growth in Flanders. In fact, every new resident requires four times more 

built-up surface compared to 100 years ago. It is reported that 10-20 % of land use changed in Flanders between 2013-

2019. 

 

In future work, we will investigate the HLCI changes over time and connect them with the changes in land use per 

parcel. Specifically, we will look at parcels that were intended for agricultural usage and have recently undergone 

functional change that is not conforming with the zonal plan. Investigating these changes, we hope to pinpoint which 

economic activities lead to the largest impact on its direct environment in terms of human land cover and imperviousness. 

An example of a case study is shown in Figure 4. 
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Figure 4 Case study of land cover for a parcel. The HLCI in 2012 is 6.74 and goes down to 5.7 in 2021 indicating that the land is 

less intensively used by humans. This is due to the transformation of agricultural land (yellow) to high and low vegetation (dark and 

light green) 

7. CONCLUSION 

We initiated this paper by highlighting the necessity of aerial-based land use classification. Especially in Flanders, 

Belgium, there is a strong need to monitor the expansion of settlement areas. We identified a significant lack of reliable 

data regarding land use. Consequently, we propose the training of deep learning classifiers, such as CNNs and ViTs, 

capable of classifying a parcels' land use based on a single aerial image. 

To train these classifiers, we introduce a unique dataset. Given the undesirable the expansion of settlement area in rural 

regions, our dataset focuses on tracking land use changes in these areas. The dataset is developed using various data 

sources in a heuristic manner, so that training samples and the class labels are generated automatically. This  approach 

yields several advantages, including rapid dataset creation, adaptability to any municipality with an available aerial 

orthomosaic, and scalability to incorporate new imagery. Our dataset is built on imagery from 13 Flemish municipalities, 

captured between 2018 and 2022. Each image corresponds to an administrative parcel, with its surrounding areas left 

unmasked and assigned one out of ten class labels. We emphasize the relevance of retaining the surrounding areas of the 

parcel. 

The trained CNNs achieve overall accuracies ranging from 55.66 % to 61.43 % and average accuracies of 37.96 to 

40.86 %, with the smaller ResNet-18 model outperforming the others. The ViT model performs notably lower, achieving 

an overall accuracy of 49.37 % and average accuracy of 34.14%. The average accuracies are lower than the overall 

accuracies as is expected with severe class imbalance. Some classes pose greater challenges for the models even though 

they are not among the least represented. For example, the residential class is difficult for the models, which can be 

attributed to the fact that many samples in other classes also serve the residential function.  We conclude that pretraining 

is incredibly important for a deep learning network, but pretraining on a remote sensing dataset does not necessarily lead 

to a better performing model. Matching imagery resolution is crucial for knowledge transfer to the target dataset. 

To quantify the human impact of the use of a parcel on the parcel and its surroundings, we proposed a Human Land 

Cover Index (HLCI). In future work, we will compare the HLCI before and after a change from agricultural land use to 

confirm our hypothesis that certain non-conforming land uses lead to more sealed surfaces and a higher human land cover 

index than other ‘less harmful’ usages. 
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